Exercise 4

A force of 13 N is needed to keep a spring with a $2-\mathrm{kg}$ mass stretched 0.25 m beyond its natural length. The damping constant of the spring is $c=8$.
(a) If the mass starts at the equilibrium position with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$, find its position at time t.
(b) Graph the position function of the mass.

Solution

In order to determine the spring constant, use the fact that 13 N is needed to stretch the spring 0.25 m .

$$
\begin{gathered}
F=k\left(x-x_{0}\right) \\
13 \mathrm{~N}=k(0.25 \mathrm{~m}) \\
k=52 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{gathered}
$$

Apply Newton's second law to obtain the equation of motion.

$$
\sum F=m a
$$

Use the fact that acceleration is the second derivative of position $a=d^{2} x / d t^{2}$ and the fact that the spring force $F=-k x$ and the damping force $F=-c(d x / d t)$ are the only forces acting on the mass.

$$
-c \frac{d x}{d t}-k x=m \frac{d^{2} x}{d t^{2}}
$$

Bring all terms to the left side.

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $x=e^{r t}$.

$$
x=e^{r t} \quad \rightarrow \quad \frac{d x}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} x}{d t^{2}}=r^{2} e^{r t}
$$

Plug these formulas into equation (1).

$$
m\left(r^{2} e^{r t}\right)+c\left(r e^{r t}\right)+k\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
m r^{2}+c r+k=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-c \pm i \sqrt{4 m k-c^{2}}}{2 m} \\
r=\left\{\frac{-c-i \sqrt{4 m k-c^{2}}}{2 m}, \frac{-c+i \sqrt{4 m k-c^{2}}}{2 m}\right\}
\end{gathered}
$$

Two solutions to the ODE are

$$
\exp \left(\frac{-c-i \sqrt{4 m k-c^{2}}}{2 m} t\right) \quad \text { and } \quad \exp \left(\frac{-c+i \sqrt{4 m k-c^{2}}}{2 m} t\right) .
$$

By the principle of superposition, then, the general solution to equation (1) is

$$
\begin{aligned}
x(t) & =C_{1} \exp \left(\frac{-c-i \sqrt{4 m k-c^{2}}}{2 m} t\right)+C_{2} \exp \left(\frac{-c+i \sqrt{4 m k-c^{2}}}{2 m} t\right) \\
& =C_{1} e^{-c t /(2 m)} \exp \left(-i \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)+C_{2} e^{-c t /(2 m)} \exp \left(-i \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right) \\
& =C_{1} e^{-c t /(2 m)}\left(\cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t-i \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)+C_{2} e^{-c t /(2 m)}\left(\cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+i \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right) \\
& =e^{-c t /(2 m)}\left[\left(C_{1}+C_{2}\right) \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+\left(-i C_{1}+i C_{2}\right) \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right] \\
& =e^{-c t /(2 m)}\left(C_{3} \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+C_{4} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants. Differentiate it with respect to t to get the velocity.

$$
\begin{aligned}
& \frac{d x}{d t}=-\frac{c}{2 m} e^{-c t /(2 m)}\left(C_{3} \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t+C_{4} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right) \\
&+e^{-c t /(2 m)}\left(-C_{3} \frac{\sqrt{4 m k-c^{2}}}{2 m} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t+C_{4} \frac{\sqrt{4 m k-c^{2}}}{2 m} \cos \frac{\sqrt{4 m k-c^{2}}}{2 m} t\right)
\end{aligned}
$$

Apply the initial conditions, $x(0)=x_{0}-x_{0}=0$ and $x^{\prime}(0)=0.5$, to determine C_{3} and C_{4}.

$$
\begin{aligned}
x(0) & =C_{3}=0 \\
\frac{d x}{d t}(0) & =-\frac{c}{2 m} C_{3}+C_{4} \frac{\sqrt{4 m k-c^{2}}}{2 m}=0.5
\end{aligned}
$$

Solving this system of equations yields

$$
C_{3}=0 \quad \text { and } \quad C_{4}=\frac{m}{\sqrt{4 m k-c^{2}}},
$$

meaning the displacement from equilibrium is

$$
x(t)=\frac{m}{\sqrt{4 m k-c^{2}}} e^{-c t /(2 m)} \sin \frac{\sqrt{4 m k-c^{2}}}{2 m} t .
$$

Therefore, plugging in $m=2 \mathrm{~kg}$ and $k=52 \mathrm{~N} / \mathrm{m}$ and $c=8 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$,

$$
x(t)=\frac{e^{-2 t}}{2 \sqrt{22}} \sin \sqrt{22} t
$$

Below is a plot of $x(t)$ versus t.

